6.4.2 <u>AI IN PSYCHOPHARMACOLOGY</u>

Artificial Intelligence in Psychopharmacology

Jon F. Heiser, M.D.
Dept. of Psychiatry and Human Behavior
University of California at Irvine

I. Summary Research Program

A. Technical Goals

- 1. We propose to construct a computer based system embodying some of the knowledge of an expert in clinical psychopharmacology. Such a system could greatly assist physicians and students who are not specialists in the chemotherapy of mental disorders in choosing the best psychopharmacological treatment for patients for whom such treatment is indicated. The system could also serve as a teaching source of psychodiagnostic and psychopharmacological knowledge.
- 2. The specific aims of this project are:
 - o To develop a set of MYCIN type rules which are a model of expert clinical teaching, consulting and decision-making for clinical psychopharmacology.
 - o To implement this set of rules in the MYCIN system, and
 - o To evaluate the performance of the resulting system as a teaching and consulting aid.
- 3. No system currently available or under development approaches the goals of the project in the field of clinical psychopharmacology.
- 4. It is anticipated that the research will fall into two distinct phases each of approximately 18 months duration. The first and current phase involves evaluating the relevance of the structure of the MYCIN system for use in clinical psychopharmacology by replacing the current infectious disease diagnosis and therapy rules and parameters with psychopharmacology rules and parameters. The second phase will involve accumulating a large body of rules and entering them into the MYCIN system and evaluating their performance. Toward the end of this phase, the behavior of the system will be compared with the behavior of recognized experts working on the Adult Inpatient Psychiatric Service of the UCI Medical Center. This evaluation will focus on the adequacy of the system for representing the knowledge of a skilled psychopharmacologist rather than an actual system performance in the clinical framework.

B. Medical Relevance and Collaboration

1. Medical Relevance

- a. For many years it has been well recognized that potent, effective psychopharmacological agents are frequently used in an unsystematic and irrational manner. The most prescribed medication in the United States today is diazepam (Valium), a minor tranquilizer. The first six most prescribed medications are all psychoactive agents. In California, instances of repetitive use of psychotropic drugs have been reported by 70% of a random sample of adults. About 30% of the sample had used psychotropic drugs in the preceding twelve months. Another study showed that 20% of a medical population was taking psychoactive agents at any given time. These figures do not include alcoholic beverages or non-prescription and illicit drugs with psychoactive properties. Many persons are advised to ingest a daily pharmacologic stew consisting of one or more neuroleptic agents. an antidepressant, an anti-parkinsonian agent, one or more tranquilizers, a hypnotic and possibly a psychostimulant. These regimens are often complicated by non-prescription remedies. alcoholic beverages and illicit drugs. The inevitable drug-drug interactions affect absorption, distribution, binding metabolism and excretion of many drugs.
- b. Each year Americans spend over \$700,000,000 for psychotropic drugs. In a recent year \$150,000,000 was spent on the antianxiety agent chlordiazepoxide (Librium). Between 20 and 25 million prescriptions are written each year for diazepam. It is estimated that 170,000,000 prescriptions for psychotropic drugs were written in 1967, and that 202,000,000 prescriptions were written in 1970, more than one for every person in the United States. About 17% of all prescriptions written are for psychoactive drugs. If we include medications in which a psychotropic drug is combined with an antispasmodic vasodialator, or other agent, probably 25% of all prescriptions contain psychotropic drugs. The vast majority of these prescriptions are written by physicians who are not psychiatrists.
- c. Many physicians, including psychiatrists, who are practicing today, completed their formal medical training prior to the 1950's when modern psychopharmacological agents first became available. Their training typically includes no instruction in modern clinical psychopharmacology. Even physicians trained since the mid-1950's cannot be expected to keep abreast of the expanding and changing field of psychopharmacology. The principles and practices recommended a few years ago are rapidly becoming obsolete. A recent study showed that the general knowledge of the pharmacology, physiology, and side effects of psychoactive medications was low in both psychiatrists and non-psychiatrists: less than 20% of the physician subjects were able to devise a psychopharmacologically rational dosage schedule for benzodiazepines. Fifty percent of the non-psychiatrist medical

staff felt that doses up to one gram per day of a tricyclic antidepressant, more than three times the recommended maximum and a potentially fatal amount, might be prescribed for depressive symptoms.

d. We estimate that there are at least 25 discrete syndromes currently identified in clinical psychiatry, each of which has a unique hierarchy of pharmacological treatment. Each treatment in each section has its own set of potential side effects, adverse reactions and drug-drug, drug-host, drug-age and drug-state of health interaction. In addition, for each therapeutic regimen in each hierarchy, there are several classes of drugs which typically consist of more than one agent or combination of agents which are potentially beneficial and which can be preferentially ranked dependent on several other factors in the clinical situation.

2. Medical Collaboration

- 1. The principal investigator, Jon F. Heiser, M.D., is a physician who is board certified in psychiatry and in full time teaching, research and University service.
- 2. Three medical students have participated in this project to date: Clifford Risk, Dana W. Ludwig, and Sue A. Clear. 3. Two resident physicians have participated in this project: Bronco R. Radisavljevic, M.D., and Steven J. Smith, M.D.
- 4. A Doctor of Pharmacy participates in the research: Pierre J. Menard, Pharm. D.

C. Progress Summary

1. Our initial endeavors to extend a MYCIN-like system to clinical psychopharmacology have been successful. None of the envisioned or predicted problems related to the vagaries of psychiatric terminology and diagnosis have materialized. The system appears to work promptly and accurately to diagnose psychiatric conditions, and in a very rudimentary form, to suggest appropriate pharmacological treatment.

The current system consists of about 20 clinical parameters and about 50 decision rules aimed chiefly at a small number of diagnosed psychiatric conditions.

The following is an example of a sample consultation but realistic case:

Sample Consultation with HEADMED, a Psychopharmacology Advisory System

Patient History

A 37 year old man was brought into the emergency room by his distraught family members. They described how the patient, a well-liked, successful and cheerful but reserved history professor, had become increasingly outspoken, short-tempered, and inattentive to accepted norms of social behavior over the preceding three weeks. An unprovoked argument and physical assault upon a long-time friend motivated the family to seek professional help.

Results of a physical exam and routine laboratory studies were within normal limits. Consultation with the psychiatric service was requested. A first year psychiatric resident re-interviewed the patient and his family, and completed a formal mental status exam prior to obtaining the following consultation from the system.

[Questions are generated by the system and appear in mixed upper and lower case, user responses are in boldface capitals and follow a double asterisk. Added commentary is indented in italics.]

```
Special options (type for help):
** AFB
Hello, Dr. Bowen
Do you wish to run the consultation program
**YES
29-OCT-76 00:47:26
  -----PATIENT-1----
  1) PATIENT'S NAME
                        [The consultation begins with a few standard
                           questions.1
  **JOHN DOE
  2) PATIENT'S AGE IN YEARS
  ** 37
  3) SEX:
  ** MALE
  4) IS John Doe ORIENTED
  ** 1/1
                     [Since the patient is disoriented, the system begins to
                      Probe a little deeper.]
  5) IS John DOE DISORIENTED-TO-PERSON
  ** Y
  6) IS John Doe DISORIENTED-TO-PLACE
  7) IS John Doe DISORIENTED-TO-TIME
  ** Y
```

- 8) PLEASE TYPE IN THE ONE WORD WHICH BEST DESCRIBES THE THOUGHT PATTERNS OR THOUGHT DISORDER OF John Doe
- ** CONFUSED

CONFUSED not a recognized response What is THE THOUGHT PATTERN OR THOUGHT DISORDER OF John Doe Expected responses are: NORMAL PROLIXIC TANGENTIAL CONFABULATION ETC> Enter HELP for list of user options.

[The initial response was incorrect, so the user was reminded of some of the correct responses. He then requests a display of the entire list. Note that both of these capabilities are part of the core of MYCIN itself. Applying it to this new domain required more than supplying the relevant list of acceptable answers.]

** ?

Expected responses are: NORMAL PROLIXIC TANGENTIAL CONFABULATION RETARDED LOOSE CONCRETE AUTISTIC DELUSIONAL WORD-SALAD MANICY MUTE Enter HELP for list of user options.

- ** TANGENTIAL
- 9) Has any biological relative of John Doe been evaluated or treated for a mental or psychiatric problem
- ** 1
- 10) What is the single word which best describes John Doe's behavior

What is the best single word description of John Doe's behavior Expected responses are: NORMAL AVERAGE UNREMARKABLE CATATONIC-EXCITEMENT etc.

Enter HELP for list of user options.

- ** HYPERACTIVE
- 11) What is the single word which best describes John Doe's mood
- ** LABILE
- 12) WHAT IS THE SINGLE WORD WHICH BEST DESCRIBES THE EMOTIONS OR FEELINGS OF John Doe
- ** ELATED
- 13) Does John Doe tend to feel worse or be more symptomatic for the first several hours after awakening for the day
- ** WHY
- [i.e. WHY is it important to determine whether or not PATIENT-1 tends to feel worse or be more symptomatic for the first several hours after awakening for the day}
- [4.0] This will aid in determining the DIAGNOSIS OF PATIENT-1.
 - [4.1] John Doe tends to feel worse or be more symptomatic for the first several hours after awakening for the day

there is weakly suggestive evidence (.45) that THE DIAGNOSIS OF john doe is depression [RULEO 17]

[All the standard explanatory capabilities of the core system extend to the new domain without additional programming effort.]

```
[back to question 13...]
 ** N
  14) Does John Doe have early morning insomnia
 ** 1/
  15) Please specify the number of pounds that John Doe lost or gained
     in the 2 months prior to seeking medical or psychiatric help.
     Estimate if necessary. Precede weight LOSS with a MINUS sign (for
     example: -8 - a weight loss of (approximately) 8 pounds within the
     2 month period prior to seeking professional help)
 ** 5
  16) Has psychological testing been ordered on John Doe
  ** N
  17) ARE THE PERCEPTIONS OF John Doe NORMAL, i.e., NEITHER DISTORTED
     NOR DISORDERED
  ** N
  18) DOES John Doe HAVE DEPERSONALIZATION
  19) DOES John Doe HAVE EXPERIENCES OF ALIENATION and/or EXPERIENCES OF
     INFLUENCE
  20) DOES John Doe HAVE INCOMPLETE AUDITORY HALLUCINATIONS and/or OTHER
     HALLUCINATIONS
  ** Y
  21) DOES John Doe HAVE COMPLETE AUDITORY HALLUCINATIONS and/or THOUGHT
     BROADCASTING
  ** N
  22) what is John Doe's level of consciousness
  What is THE LEVEL OF CONSCIOUSNESS OF John Doe
  Expected responses are: HYPERALERT VIGILANT ALERT NORMAL etc.
  Enter HELP for list of user options.
  ** VIGILANT
  23) Is this the first episode of significant mental disturbance that
      john doe has had
  ** WHY
[i.e. WHY is it important to determine whether or not this is PATIENT-1's
     first episode of significant mental disturbance}
[8.0] This will aid in determining THE TREATMENT NAME OF PATIENT-1.
     If
        [8.1] THE DIAGNOSIS OF John Doe is mania, and
        [8.2] this is not John Doe's first episode of significant mental
                disturbance
     then
        there is strongly suggestive evidence (.9) that THE TREATMENT
         NAME OF John Doe is lithium
     [RULE071]
  [back to question 23...]
     [The system has finished with the diagnostic phase, and asks a
     question to help determine the appropriate therapy.]
  ** Y
```

[And finally the system presents its diagnosis and therapy recommendations. The numbers are used to give relative weightings to the conclusions: negative numbers indicate that the evidence tends to rule out that possibility.]

The diagnosis for patient 1 is:

ORGANIC-BRAIN-SYNDROME	(.84)
DEPRESSION	(.37)
MANIA	(.35)
SCHIZOPHRENIA	(.2)
PERSONALITY-DISORDER	(4)
NEUROSIS	(4)

So the treatment should be

EVALUATION	(.84)
ANTIDEPRESSANT	(.3)
NEUROLEPTIC	(.28)

Recently work has been directed toward expanding the system and revising the representation of psychiatric diagnosis and treatment recommendation.

We have also begun development of a small system to score the Minnesota Multiphasic Personality Inventory (MMPI) psychological test using empirically well established rules easily coded into the MYCIN system.

- D. Up to date list of publications.
 - 1. No reports of this work have been published to date.
 - 2. Heiser, J.F. Computer-Aided Diagnosis of Psychiatric Patients. Presented to the Research Meeting, School of Engineering, University of California, Irvine, 7 October 1976.
 - 3. Brooks, R. E. and Heiser, J.F. An Application of Artificial Intelligence to Psychiatry. Presented to:
 - (a) Indian Institute of Technology, Madris, India, 28 September 1976, and
 - (b) Madris Christian College, Madris, India, 3 October 1976.
 - 4. Heiser, J.F. and Brooks, R. E. Artificial Intelligence in Psychopharmacology. Accepted for presentation at the VI World Congress of Psychiatry, Honolulu, Hawaii, 28 August 3 October 1976.

II. Interactions with the SUMEX-AIM resource

- A. Examples of collaboration and medical use of programs via SUMEX
 - 1. As explained fully in the attached research grant application, the MYCIN group has been working informally with Dr. Heiser on the development of a knowledge base of decision criteria for psychopharmacology over the past two years.
- B. Examples of sharing, contacts, and cross-fertilization with other SUMEX-AIM projects (via workshops, system facilities, personal contacts, etc.)
 - 1. Dr. Heiser's introduction to the SUMEX-AIM project first occurred at the first AIM workshop held at Rutgers in June 1975.
 - 2. Although Dr. Heiser had previously heard of the MYCIN project, his official collaboration with MYCIN resulted from discussions originating at the first AIM Workshop.
 - 3. A collaborative experiment with Kenneth Mark Colby, M.D., and members of the PARRY project was developed, implemented and analyzed completely on SUMEX-AIM. Enclosed is a rough draft of a paper reporting this "Turing Test" which was performed on-line on SUMEX, with the psychiatrist-judges located at Irvine, the patient-person at UCLA and PARRY at SUMEX.
 - 4. Much technical support has been received freely and continuously from the SUMEX staff and members of the MYCIN team, including basic instruction in the use of SUMEX, TENEX, and MYCIN, principles of knowledge representation in MYCIN, and on-going consultation for details of implementing HEADMED in MYCIN.

Much information has been obtained during three visits to to SUMEX and MYCIN, but daily work in this project would be impossible without the ability to converse via links, messages, and telephone conversations with members of the SUMEX and MYCIN staffs.

6.4.3 ORGAN CULTURE PROJECT

Application of Computer Science to Organ Culture

Professor Robert K. Lindsay and Dr. Maija Kibens The University of Michigan, Ann Arbor

I) Summary of research program

The goal of this research project is to develop new methods for the design and analysis of organ culture experiments, using techniques of artificial intelligence.

The cultivation of organ fragments is an important method for the study of disease processes. In contrast to cell culture, organ culture is designed to inhibit outgrowth of cells and to deal with normal tissue relationships as they exist in the body, divorced from the complexities or organ interaction. The technique involves the maintenance of differentiated cells as a group within their normally associated tissues. With an ability to maintain differentiated tissues in culture, a direct histologic and biochemical assessment of factors influencing an organ is possible. Such a biologic model would permit investigation of the structural and functional effects of various substances directly on the target organ. With a chemically defined medium, the technique would allow a simultaneous evaluation of metabolites or hormones released by the organ fragments.

The research is being done in collaboration with Professors Raymond Kahn, Theodore Fischer, and William Burkel of the Department of Anatomy, the University of Michigan Medical School.

We have been working on methods of image analysis of microscope slides. This has been approached from two directions. On the one hand we are writing programs for special image analysis hardware. These programs will calculate various indices of the condition of the cultivated organ fragments based upon measured morphological features. The second approach is to translate the biologist's verbal descriptions of microscope slides into computer data structures which encode conditions not detectable by our image analysis programs, though readily seen and reported by trained human observers. We have developed a dictionary of anatomical terms and programs for morphological analysis. At present we are working on the syntactic analysis of the scientist's verbal descriptions.

II) <u>Interactions with the SUMEX-AIM resource</u>

We have had valuable contacts with members of the DENDRAL project and the MOLGEN project, which share certain goals and methods with our own work.

6.4.4 NEUROPROSTHESES PROJECT

Neuroprostheses Project

M. G. Mladejovsky, Ph.D., Director Division of Artificial Organs University of Utah Medical Center Salt Lake City, Utah 84112

I. Research Summary

Our research involves the investigation of artificial vision by electrical stimulation of visual cortex and artificial hearing by electrical stimulation of the cochlea. This effort has involved the collaboration of several people from many disciplines, not only from the University of Utah, but also from the Ear Research Institute, Los Angeles; University of Western Ontario, London, Ontario; and Columbia University, New York.

The instrumentation involved is controlled by a minicomputer system consisting of a PDP-8 and a PDP-11/05. Experimental protocols are implemented by programs running in the PDP-11. We sought access to SUMEX in order to use the BLISS-11 compiler which runs on the PDP-10. We are using BLISS-11 as the implementation language for an interactive programming system which will enable more flexible control and variation of our experiments.

The base language we are using is BALM (Malcolm Harrison, "BALM Programmer's Manual", Courant Institute, NYU, 1974). This language is defined in terms of an abstract machine called the MBALM machine. The plan of attack is as follows:

- 1) implement the MBALM machine in BLISS-11
- 2) bring up BALM, using a dummy garbage collector and no virtual memory
- 3) implement garbage collection and virtual memory
- 4) add floating point operations
- 5) add a graphics package
- 5) add real-time capabilities
- 7) provide an interface to PDP-11 machine language

The project has progressed to the point that step 2 is almost complete. This has involved installing a new version of BLISS-11 at SUMEX, writing software to allow file transfers between SUMEX and our PDP-11 (which is connected to the Utan-TIP as a terminal), writing MBALM and various support routines in BLISS-11, implementing an I/O package for BALM in assembly language, and performing a bootstrapping process with the BALM self-definition. Our schedule calls for completing steps 3, 4, and 5 by 1 July 1977. Steps 6 and 7 have not been planned in detail at this time.

We are planning to run the resulting programming system on our PDP-11/05 with 28K core, GT-40 graphics system, and running the RT-11 operating system. Modifying the system to run under a different operating system should be straightforward. However, whether the system will run efficiently on a machine with less than 20K core is questionable. It is too early now to say.

There have been no new publications by our group since our application was filed last year. Currently several papers are in progress but have not yet been submitted for publication. A partial list of previous publications is attached.

When the BALM system has reached a stable state, we will be happy to provide documentation and sources for it to anyone who requests them.

II. <u>Interactions with SUMEX</u>

We have been perfectly satisfied with our use of SUMEX. By far our greatest use of the system has been of text editors and the BLISS-11 compiler.

We have also become acquainted through SUMEX with the OMNIGRAPH graphics package available from NIH and have obtained a copy of the OMNIGRAPH manual. We have not used OMNIGRAPH yet but may wish to in the future. We are considering the features of OMNIGRAPH in the design of the graphics package for our interactive system.

We are quite interested in using the MAINSAIL system being developed at SUMEX and have been told that RT-11 is one of the first operating systems under which it will be available.

IV. Publications

- Dobelle, W. H., Mladejovsky, M. G., and Girvin, J.P. Artificial vision for the blind: electrical stimulation of visual cortex offers hope for a functional prosthesis. Science, 183, 1 February 1974, 440-444.
- Dobelle, W. H., and Mladejovsky, M. G. Phosphenes produced by electrical stimulation of human occipital cortex and their application to the development of a prosthesis for the blind. J. Phsiol., 243, 1974, 553-576.

- Dobelle, W. H., Mladejovsky, M. G., Evans, J. R., Roberts, T. S., and Girvin, J. P. 'Braille' reading by a blind volunteer by visual cortex stimulation.

 Nature, 259, 15 January 1976, 111-112.
- Mladejovsky, M. G., Eddington, D. K., Evans, J. R., and Dobelle, W. H. A computer-based brain stimulation system to investigate sensory prostheses for the blind and deaf. IEEE Trans. Biomed. Eng., BME-23, 4 July 1976, 286-296.
- Mladejovsky, M. G., Eddington, D. K., Dobelle, W. H., and Brackmann, D. E. Artificial hearing for the deaf by cochlear stimulation: pitch modulation and some parametric thresholds. Transactions of ASAIO, 21, 1975, 1-6.

6.4.5 MATHEMATICAL MODELING OF PHYSIOLOGICAL SYSTEMS

Mathematical Modeling of Physiological Systems

John J. Osborn, M.D., Director Research Data Facility The Institutes of Medical Sciences San Francisco, California 94115

The overall goal of the Institutes of Medical Sciences's collaboration with SUMEX is the application of computer technology to clinical medicine. Our efforts during the past year have been in the fields of knowledge based engineering and mathematical modeling.

We are using our available computer based physiological measurement systems to provide the basis on which physiological interpretation is being developed using knowledge engineering, and to provide the data with which mathematical models are being developed using the SUMEX modeling facility.

BIOMEDICAL KNOWLEDGE ENGINEERING IN CLINICAL MEDICINE (KEMED)

The KEMED system is conceived as an application of the discipline of heuristic based programming to the interpretation of measurements made in clinical medicine. The long range goal of the project is to do research on a biomedical knowledge-based system for interpreting the clinical significance of physiological data. This interpretation will be used to aid in diagnostic decision making and the selection of therapeutic action. Even the best measurements often go unused because of the reasonable reluctance of clinical staff to make measurements whose results they only poorly understand and whose relation to clinical management is ambiguous. We will use techniques of biomedical knowledge engineering to extract and systematize the heuristic knowledge used by experts in the practice of their clinical art. These techniques will be used to construct and utilize a knowledge base to guide inference making by computer programs.

The first program in the KEMED system is designed for interpretation of standard pulmonary function laboratory test data. A knowledge base was developed for interpreting the relationship between measured flows, lung volumes, pulmonary diffusion capacity and pulmonary mechanics and the standard diagnoses of pulmonary function. The knowledge base includes interpretation of measured test results and diagnosis of the type and severity of any pulmonary disease which may be present. The program is being developed as an extension to the MYCIN formalism, and it makes extensive use of the MYCIN structures and programming system. Funding has been requested to continue this work.

MATHEMATICAL MODELING OF PHYSIOLOGICAL SYSTEMS

Mathematical models of the cardio-pulmonary system are being developed to extract clinical physiological information from data acquired by the patient monitoring system. two approaches are being taken: 1) parsimonious models of the dynamic behavior of CO following an increase in inspired oxygen concentration are being developed for automated patient monitoring application, and 2) a detailed model of the regional behavior of radioactive tracers in the lung is being used as a standard for evaluation of the previous models. The MLAB (Modelling Laboratory) program, available on SUMEX is being used extensively for model development by simulating hypothesized models and for data analysis, i.e., identification of model parameters from experimental data. The CO dilution method has been applied successfully in the ICU and additional funding requested. Two new methods for measuring regional lung function with radioactive tracers have been developed where MLAB was essential and further funding has been requested. MLAB was used to perform an error analysis of the method for measuring regional pulmonary shunt fraction. Also, using MLAB model simulation to understand the complex dynamics of 133-Xenon in the lung-tissue system, a method for measuring intraregional ventilation/perfusion ratio maldistribution has been developed which significantly extends the sensitivity of previous methods. A model of the oculatory system is presently being developed on MLAB in collaboration with the Smith-Kettlewell Institute of the Visual Sciences. We anticipate that their model will be used in the future for treatment of patients with strabismus.

Interface with SUMEX

We use SUMEX through the Tymshare network using a terminal. The text editing facilities of SUMEX, including both text editing and message sending, are excellent additions to our in-house facilities (PDP-11 based system). The message system is particularily useful for communicating ideas and questions with other colleagues using the SUMEX system. Our principal difficulty with SUMEX is turn-around time. Both the MYCIN amd MLAB systems are interactive, and the 30-60 second time response times associated with MYCIN and MLAB jobs are at best discouraging.

We have a strong desire to develop in-house capabilities in artificial intelligence. We have already invested significant numbers of hours in developing competence with the MYCIN system, and we are confident of developing an extremely capable staff in heuristic programming. An in-house AI computational capability is a more difficult capability to conceive. Developing

artificial intelligence programming facility on a PDP-11 based system remains a significant long-term interest. The satellite capability offers both the potential of not continuing to provide additional load on SUMEX, and it offers the potential of more rapid interaction with the user.

The SUMEX facility contributed to the following grant applications and articles:

Bibliography

- 1) Simulation to Relate Measured Gas Concentrations at the Mouth to Pulmonary Mechanics and Perfusion. J.C. Kunz, R.R. Mitchell, D.H. McClung, J.J. Osborn, Submitted to the 1977 ACEMB.
- 2) Identifiability of Pulmonary and Recirculation Parameters Fol-lowing Sequential Bolus Inputs of 133 Xe. R.R. Mitchell, R.J. Fallat. Submitted to the 1977 ACEMB.
- 3) Simulation of Intraregional Ventilation-Perfusion Ratio Mal-distribution. J.C. Glaub, R.R. Mitchell, R.J. Fallat. Submitted to the 1977 ACEMB.
- 4) Measurement of Residual Volume and Ventilation Distribution Using Helium and a Five Vital Capacity Breath Maneuver. R.R. Mitchell, Technical Report 32, Institutes of Medical Sciences, Feb. 1977.
- 5) Identification of Human Oculomotor System Parameters with Application to Strabismus. N.K. Gupta, A.V. Phatak, Systems Control; R.R. Mitchell, Heart Research Institute and Carter Collins, Smith-Kettlewell Institute, Institutes of Medical Sciences. Submitted to Joint Automatic Control Conference, 197..

PUFF/VM PROJECT Section 6.4.6

6.4.6 PUFF/VM PROJECT

PUFF/VM - Pulmonary Function and Ventilator Management Project

John J. Osborn, M.D. The Institutes of Medical Sciences (San Francisco)

and

E. A. Feigenbaum Computer Science Department, Stanford University

Note: The PUFF/VM project is the outgrowth of the efforts of Prof. Feigenbaum's group at Stanford to establish new applications areas for AI in medical research. It represents a collaboration with Dr. Osborn's group which has been working on another AIM pilot project titled "Mathematical Modeling of Physiological Systems". A PUFF/VM proposal is currently pending with NIH and and PUFF/VM is being reviewed in parallel by the AIM Executive Committee for separate pilot status.

1. Overall Objectives:

Our immediate objective is to develop a computer programming system for interpreting the clinical significance of measures of pulmonary function. We hope to develop this system for diagnostic use in the pulmonary function laboratory and to aid diagnosis and ventilator management of respiratory insufficiency in the intensive care unit. We hope to demonstrate the clinical effectiveness of such a system for improving the accuracy and timeliness of diagnosis.

Our long range goal is to develop an integrated system for making and interpreting measures of pulmonary function. We believe that this is possible because of the present and potential contribution of instrumentation and data analysis systems to the diagnosis and clinical management of pulmonary distress. We believe, in addition, that the discipline of knowledge-based heuristic programming is potentially the best basis on which to develop a system for automaticaly interpreting the results of the measures of pulmonary function.

We aim, in the long run, to develop an inexpensive enough implementation that the system will find wide acceptability in the delivery of clinical care.

[Further details will be furnished by Dr. Feigenbaum on request]